Extensions 1→N→G→Q→1 with N=C22×Q8 and Q=D5

Direct product G=N×Q with N=C22×Q8 and Q=D5
dρLabelID
C22×Q8×D5160C2^2xQ8xD5320,1615

Semidirect products G=N:Q with N=C22×Q8 and Q=D5
extensionφ:Q→Out NdρLabelID
(C22×Q8)⋊1D5 = (C5×Q8)⋊13D4φ: D5/C5C2 ⊆ Out C22×Q8160(C2^2xQ8):1D5320,854
(C22×Q8)⋊2D5 = (C22×D5)⋊Q8φ: D5/C5C2 ⊆ Out C22×Q8160(C2^2xQ8):2D5320,858
(C22×Q8)⋊3D5 = C22×Q8⋊D5φ: D5/C5C2 ⊆ Out C22×Q8160(C2^2xQ8):3D5320,1479
(C22×Q8)⋊4D5 = C2×C20.C23φ: D5/C5C2 ⊆ Out C22×Q8160(C2^2xQ8):4D5320,1480
(C22×Q8)⋊5D5 = C2×D103Q8φ: D5/C5C2 ⊆ Out C22×Q8160(C2^2xQ8):5D5320,1485
(C22×Q8)⋊6D5 = C2×C20.23D4φ: D5/C5C2 ⊆ Out C22×Q8160(C2^2xQ8):6D5320,1486
(C22×Q8)⋊7D5 = Q8×C5⋊D4φ: D5/C5C2 ⊆ Out C22×Q8160(C2^2xQ8):7D5320,1487
(C22×Q8)⋊8D5 = C10.442- 1+4φ: D5/C5C2 ⊆ Out C22×Q8160(C2^2xQ8):8D5320,1488
(C22×Q8)⋊9D5 = C10.452- 1+4φ: D5/C5C2 ⊆ Out C22×Q8160(C2^2xQ8):9D5320,1489
(C22×Q8)⋊10D5 = C2×Q8.10D10φ: D5/C5C2 ⊆ Out C22×Q8160(C2^2xQ8):10D5320,1617
(C22×Q8)⋊11D5 = C22×Q82D5φ: trivial image160(C2^2xQ8):11D5320,1616

Non-split extensions G=N.Q with N=C22×Q8 and Q=D5
extensionφ:Q→Out NdρLabelID
(C22×Q8).1D5 = C2×Q8⋊Dic5φ: D5/C5C2 ⊆ Out C22×Q8320(C2^2xQ8).1D5320,851
(C22×Q8).2D5 = (Q8×C10)⋊16C4φ: D5/C5C2 ⊆ Out C22×Q8160(C2^2xQ8).2D5320,852
(C22×Q8).3D5 = C2×C20.10D4φ: D5/C5C2 ⊆ Out C22×Q8160(C2^2xQ8).3D5320,853
(C22×Q8).4D5 = (C2×C10)⋊8Q16φ: D5/C5C2 ⊆ Out C22×Q8160(C2^2xQ8).4D5320,855
(C22×Q8).5D5 = C10.C22≀C2φ: D5/C5C2 ⊆ Out C22×Q8320(C2^2xQ8).5D5320,856
(C22×Q8).6D5 = (Q8×C10)⋊17C4φ: D5/C5C2 ⊆ Out C22×Q8320(C2^2xQ8).6D5320,857
(C22×Q8).7D5 = C22×C5⋊Q16φ: D5/C5C2 ⊆ Out C22×Q8320(C2^2xQ8).7D5320,1481
(C22×Q8).8D5 = C2×Dic5⋊Q8φ: D5/C5C2 ⊆ Out C22×Q8320(C2^2xQ8).8D5320,1482
(C22×Q8).9D5 = C10.422- 1+4φ: D5/C5C2 ⊆ Out C22×Q8160(C2^2xQ8).9D5320,1484
(C22×Q8).10D5 = C2×Q8×Dic5φ: trivial image320(C2^2xQ8).10D5320,1483

׿
×
𝔽